THE CHEMISTRY OF SMALL RING COMPOUNDS. PART 34¹ THE N.N-DIMETHYL-2,2-DIMETHYLCYCLOPROPANIMINIUM ION

E. Jongejan², H. Steinberg and Th.J. de Boer^{*} Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands (Received in UK 17 November 1975; accepted for publication 22 December 1975)

The Favorskii-type reaction of 2-dialkylamino-3-halocycloalkenes <u>1</u>, which takes place via the iminium ions <u>2</u>, provides an elegant entry into cyclopropane chemistry³⁻⁸. Thus far the reaction has only been applied to cyclic enamines <u>1</u> and consequently only bicyclic cyclopropane derivatives have been prepared by this method.

Because of our interest in cyclopropaniminium ions in general⁹ we investigated the possibility of extension to acyclic enamines in order to prepare simpler cyclopropane derivatives. Thus we reacted the acyclic chloro enamine <u>4</u> (prepared from 2-chloro-2-methylbutan-3-one and $(CH_3)_2NH/TiCl_4$) with $AgBF_4$ and an excess of dimethylamine in $CH_2Cl_2^{10}$. Although these reaction conditions give excellent results with the cyclic enamines <u>1</u>⁷, an intricate mixture of substitution-, oxidation- and ring-closed compounds is produced from the acyclic enamine <u>4</u> in yields as indicated¹¹.

The reaction takes a far more selective course, when the enamine <u>4</u>, $AgBF_4$ and dimethylamine are reacted in a 1:1:2 molar ratio in ether. Contrary to CH_2Cl_2 , this solvent gives a heterogeneous reaction mixture, from which the bisamine <u>5</u> is formed almost quantitatively¹².

Methylation of <u>5</u> with $\text{CH}_3\text{OSO}_2\text{F}$ gives only polymer. In contrast, reaction with dimethylchloronium ion in SO_2^{-13} at -78° results in formation of the N,N-dimethyl-2,2-dimethylcyclopropaniminium ion <u>6</u> and tetramethylammonium ion.

The NMR-spectrum (HA 100, -18°) shows a six proton singlet at $\delta = 1.51$ (C(CH₃)₂), a two proton_{ϕ} quasi septet (J = 1.3) at $\delta = 2.18$ and a six proton multiplet at $\delta = 3.74$ (N(CH₃)₂). In a double resonance experiment irradiation at $\delta = 2.18$ causes the multiplet at $\delta = 3.74$ to collapse to two singlets¹⁴ separated by 0.01 ppm. Conversely, irradiation at $\delta = 3.74$ causes the septet at $\delta = 2.18$ to collapse to a singlet¹⁴. These data are in close agreement with those of the N,N-dimethylcyclopropaniminum ion, obtained earlier via an entirely different route starting with cyclopropanone⁹.

When a solution of the ion <u>6</u> in fluorosulfonic acid is warmed to <u>ca</u> 35°, ring opening occurs whereby the sultone <u>9</u> is produced¹⁵. This probably originates from cycloaddition¹⁶ of SO₃ (present in HFSO₃) to the diene <u>8</u>. After quenching with saturated Na₂CO₃ and rapid extraction with CH₂Cl₂ the neutral sultone <u>10</u> is obtained, which can be purified by crystallisation from ether/pentane¹⁷ (mp 62-63°).

Thus <u>6</u> is thermally much less stable than the cyclopropaniminium ion without ring substituents which does not undergo ring opening until 150° ¹¹. The two C-methyl groups in the allylic cation <u>7</u> clearly facilitate its formation as compared with the allylic cation carrying no such stabilising methyl groups.

References

- Part 33, A.A.P. Noordstrand, H. Steinberg and Th.J. de Boer, Tetrahedron Lett. <u>1975</u>, 2611.
- 2. Part of the forthcoming thesis of E. Jongejan.
- 3. J. Szmuszkovicz, E. Cerda, M.F. Grostic and J.F. Zieserl, Tetrahedron Lett <u>1967</u>, 3969.
- J. Szmuszkovicz, I.J. Duchamp, E. Cerda and C.G. Chidester, Tetrahedron Lett. <u>1969</u>, 1309.
- 5. D. Cantacuzene and M. Tordeux, Tetrahedron Lett 1971, 4807.
- 6. H.H. Wasserman and M.S. Baird, Tetrahedron Lett. 1971, 3721.
- 7. E. Jongejan, H. Steinberg and Th.J. de Boer, Synth. Commun. 4, 11 (1974).
- J.C. Blazejewski, D. Cantacuzene and C. Wakselman, Tetrahedron <u>29</u>, 4233 (1973).
- 9. E. Jongejan, W.J.M. van Tilborg, Ch.H.V. Dusseau, H. Steinberg and Th.J. de Boer, Tetrahedron Lett. <u>1972</u>, 2359.
- 10. This provides a homogeneous reaction mixture.
- 11. Full details will be published elsewhere.
- 12. NMR (CCl₄): singlets in a 1:3:6 ratio at $\delta = 0.37$, $\delta = 1.19$ and $\delta = 2.52$. IR (liq.) : 3060 cm⁻¹
 - MS : M^+ at m/e 156, 0.6% of the base peak at m/e 44.

- From SbF5 and an excess of CH₃Cl, see G.A. Olah and J.R. DeMember, J. Amer. Chem. Soc. <u>92</u>, 2562 (1970).
- 14. The singlet is somewhat broadened (width at half height 1.5 Hz) possibly due to coupling with ^{14}N .
- 15. NMR (HFSO₃): $\delta = 2.05$ (m, 3H), $\delta = 3.22$ (d, J = 5.2, 6H), $\delta = 4.12$ (m, 2H), $\delta = 5.25$ (m, 2H), $\delta = 7.6$ (broad, 1H).
- 16. F.G. Bordwell, R.D. Chapman and C.E. Osborne, J. Amer. Chem. Soc. <u>81</u>, 2002 (1959).
- 17. NMR (CDCl₃): $\delta = 1.76$ (triplet of triplets, J = 0.92 and J = 1.85, CH_3-C), $\delta = 2.54$ (s, CH_3-N), $\delta = 3.67$ (triplet of quartets, J = 2.20 and J = 0.92, CH_2-SO_2) and $\delta = 4.88$ (triplet of quartets, J = 2.20 and J = 1.85, CH_2-O). IR (CHCl₃): 3020, 2980, 2940, 2910, 2870, 2835 and 2790 cm⁻¹ (all m, CH stretch); 1675 cm⁻¹ (w, C=C stretch); 1370, 1362, 1175 (all s, sultone bands¹⁸).

MS: M⁺ at m/e 191, 18% of the base peak at m/e 82.

18. F. Püschel and C. Kaiser, Chem. Ber. 97, 2917 (1964).